Download A bilinear approach to cone multipliers I by Tao T., Vargas A. PDF

By Tao T., Vargas A.

Show description

Read or Download A bilinear approach to cone multipliers I PDF

Similar nonfiction_1 books

Bourbon Empire: The Past and Future of America’s Whiskey

Unraveling the numerous myths and misconceptions surrounding America’s so much iconic spirit, Bourbon Empire lines a historical past that spans frontier uprising, Gilded Age corruption, and the magic of Madison road. Whiskey has profoundly encouraged America’s political, fiscal, and cultural future, simply as those self same components have encouraged the evolution and designated taste of the whiskey itself.

Extra info for A bilinear approach to cone multipliers I

Example text

Carleson, P. Sjo for the disc, Studia Math. 44 (1972), 287–299. [Ch] M. Christ, On the regularity of inverses of singular integral operators, Duke Math. J. 57 (1988), 459–484. [D] S. Drury, Lp estimates for the x-ray transform, Ill. J. Math. 27 (1983), 125–129. [FK] D. Foschi, S. Klainerman, Homogeneous L2 bilinear estimates for wave equations, preprint. ¨ rmander, Fourier integral operators, Acta Math. 127 (1971), 79– [H] L. Ho 183. [MVV1] A. Moyua, A. Vargas, L. Vega, Schr¨odinger Maximal Function and Restriction Properties of the Fourier transform, International Math.

Second Edition. M. Stein, Harmonic Analysis, Princeton University Press, 1993. [T] T. Tao, The Bochner-Riesz conjecture implies the Restriction conjecture, Duke Math. , to appear. [TV] T. Tao, A. Vargas, A bilinear approach to cone multipliers II. Applications, GAFA, in this issue. [TVV] T. Tao, A. Vargas, L. Vega, A bilinear approach to the restriction and Kakeya conjectures, J. Amer. Math. Soc. 11 (1998), 967–1000. [To] P. Tomas, A restriction theorem for the Fourier transform, Bull. Amer. Math.

Carleson, P. Sjo for the disc, Studia Math. 44 (1972), 287–299. [Ch] M. Christ, On the regularity of inverses of singular integral operators, Duke Math. J. 57 (1988), 459–484. [D] S. Drury, Lp estimates for the x-ray transform, Ill. J. Math. 27 (1983), 125–129. [FK] D. Foschi, S. Klainerman, Homogeneous L2 bilinear estimates for wave equations, preprint. ¨ rmander, Fourier integral operators, Acta Math. 127 (1971), 79– [H] L. Ho 183. [MVV1] A. Moyua, A. Vargas, L. Vega, Schr¨odinger Maximal Function and Restriction Properties of the Fourier transform, International Math.

Download PDF sample

Rated 4.18 of 5 – based on 43 votes